» Denklemler, 2.Dereceden Denklemlerin Çözümü,8.sınıf çözümlü mate

Yayınlanma Zamanı: 2010-03-01 10:48:00



Sponsorlu Bağlantılar

 

Denklemler, 2.Dereceden Denklemlerin Çözümü Yazdır E-posta
 

2.dereceden denklemler, bilinmeyenin kuvvetinin en fazla “ 2” olduğu denklemlerdir. Örneğin, x 2 + 5 x + 6 = 0

Sıfıra Eşit Olan Denklemlerin Çözümleri

 

Cebir – 2.Dereceden Denklemlerin Çözümü

2.dereceden denklemler, bilinmeyenin kuvvetinin en fazla “ 2” olduğu denklemlerdir. Örneğin, x 2 + 5 x + 6 = 0

Sıfıra Eşit Olan Denklemlerin Çözümleri

Eşitliğin sağ tarafı sıfıra eşit olan denklemlerde aşağıdaki yöntem kullanılır.

Örnek 1: x2 + 5x + 6 = 0 denklemini çözünüz.

1.Adım : Çarpanlarına ayırın

  ( x + 3)( x + 2) = 0

  2.Adım: Her çarpanı sıfıra eşitleyin

  x + 3 = 0 veya x + 2 = 0


(Not:Eğer parantezli iki ifadenin çarpımı sıfıra eşitse, parantezli ifadelerden bir sıfıra eşit olmak zorundadır).

3.Adım: Bu iki denklemi çözün

 

x + 3 = 0

veya

x + 2 = 0

 
 

x = –3

 

x = –2

 

O halde –3 ve –2 bu denklemin çözümleridir.

Denklemin grafiğinden dolayı 2 tane çözümü vardır. (Grafik çalışma notlarına bakınız).

Örnek 2: x2 + 7 x – 18 = 0 Denklemini çözünüz.

  ( x + 9)( x  – 2) = 0    
 

x + 9 = 0

veya

x – 2 = 0

 
 

x = – 9

 

x = 2

 

Örnek 3: x2  – 8 x + 12 = 0 Denklemini çözünüz.

  ( x - 6)(x - 2) = 0    
 

x - 2 = 0

veya

x – 6 = 0

 
 

x = 2

 

x = 6

 

 

Sıfıra Eşit Olmayan Denklemlerin Çözüm Yöntemi

Sıfıra eşit olmayan denklemlerin çözümünde uygulanacak yöntemi aşağıdaki örnek üzerinde görelim.

Örnek 1: x2 + 5 x + 3 = 17 denklemini çözünüz.

Eşitliğin sağ tarafını “ 0” yapmak için, eşitliğin her iki tarafından 17'yi çıkarın

 

x 2 + 5 x  – 14 = 0

   
 

( x + 7)( x – 2) = 0

   
 

x = –7

veya

x = 2  

 

ALINTI 


Duyuru
Sitemizde güncelleme çalışmaları devam etmektedir.
Görüş ve önerilerinizi bizimle paylaşabilirsiniz !